首页> 外文OA文献 >Optimal and simultaneous designs of Hermitian transforms and masks for reducing intraclass separations of feature vectors for anomaly detection of diabetic retinopathy images
【2h】

Optimal and simultaneous designs of Hermitian transforms and masks for reducing intraclass separations of feature vectors for anomaly detection of diabetic retinopathy images

机译:用于减少糖尿病视网膜病变图像异常检测的特征向量的类内分离的Hermitian变换和蒙版的优化和同步设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a novel methodology for the optimal and simultaneous designs of both Hermitian transforms and masks for reducing the intraclass separations of feature vectors for anomaly detection of diabetic retinopathy images. Each class of training images associates with a Hermitian transform, a mask and a known represented feature vector. The optimal and simultaneous designs of both the Hermitian transforms and the masks are formulated as least squares optimization problems subject to the Hermitian constraints. Since the optimal mask of each class of training images is dependent on the corresponding optimal Hermitian transform, only the Hermitian transforms are required to be designed. Nevertheless, the Hermitian transform design problems are optimization problems with highly nonlinear objective functions subject to the complex valued quadratic Hermitian constraints. This kind of optimization problems is very difficult to solve. To address the difficulty, this paper proposes a singular value decomposition approach for deriving a condition on the solutions of the optimization problems as well as an iterative approach for solving the optimization problems. Since the matrices characterizing the discrete Fourier transform, discrete cosine transform and discrete fractional Fourier transform are Hermitian, the Hermitian transforms designed by our proposed approach are more general than existing transforms. After both the Hermitian transforms and the masks for all classes of training images are designed, they are applied to test images. The test images will assign to the classes where the Euclidean 2-norms of the differences between the processed feature vectors of the test images and the corresponding represented feature vectors are minimum. Computer numerical simulation results show that the proposed methodology for the optimal and simultaneous designs of both the Hermitian transforms and the masks is very efficient and effective. The proposed technique is also very efficient and effective for reducing the intraclass separations of feature vectors for anomaly detection of diabetic retinopathy images. © 2012 IEEE.
机译:本文提出了一种用于优化和同时设计Hermitian变换和蒙版的新颖方法,以减少用于糖尿病视网膜病变图像异常检测的特征向量的类内分离。每类训练图像都与一个Hermitian变换,一个蒙版和一个已知的表示特征向量相关联。埃尔米特变换和蒙版的最优和同时设计被表述为受埃尔米特约束的最小二乘优化问题。由于每一类训练图像的最佳蒙版都取决于相应的最佳厄米变换,因此仅需要设计厄米变换即可。尽管如此,埃尔米特变换设计问题是具有高度非线性目标函数的优化问题,该目标函数受复值二次埃尔米特约束约束。这种优化问题很难解决。为了解决这一难题,本文提出了一种奇异值分解方法,以求出优化问题的解的条件,并提出了一种迭代方法来求解优化问题。由于表征离散傅立叶变换,离散余弦变换和离散分数阶傅立叶变换的矩阵是Hermitian,因此我们提出的方法设计的Hermitian变换比现有变换更通用。在设计好所有训练图像类的Hermitian变换和蒙版后,将它们应用于测试图像。测试图像将被分配给其中测试图像的处理后的特征向量与相应的表示的特征向量之间的差的欧几里德2-范数最小的类别。计算机数值模拟结果表明,所提出的用于埃尔米特变换和掩模的最优和同时设计的方法是非常有效的。所提出的技术对于减少用于糖尿病性视网膜病图像的异常检测的特征向量的类内分离也是非常有效和有效的。 ©2012 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号